Как проверить ксеноновую лампу

Как проверить люминесцентную лампу мультиметром

  • Услуги электрика
  • Online калькуляторы
  • Тесты
  • Контакты
  • Интересное
Школа электрика

Люминесцентные лампы на разных этапах срока эксплуатации могут в разной степени снизить свою работоспособность. Освещенность становится недостаточной, лампа гудит и мерцает, оказывая неблагоприятное воздействие на организм человека. В связи с этим приходится решать задачу, как проверить люминесцентную лампу мультиметром, чтобы устранить выявленные недостатки и причины, вызвавшие их появление.

Как работают люминесцентные лампы

Люминесцентные лампы относятся к энергосберегающим, а их работу можно сравнить с различными типами газоразрядных источников света. Все элементы размещаются в стеклянной колбе, из которой предварительно откачан воздух. Взамен закачивается инертный газ с небольшим количеством ртути.

С противоположных сторон установлены спиральные электроды, выполняющие функцию нитей накаливания. Каждый из них соединяется с двумя контактными штырьками, расположенными на пластинах из диэлектрического материала. Внутренняя сторона стеклянной трубки покрыта люминофором. Конструкция всех ламп одинаковая, независимо от размеров колбы. Сами лампы вставляются в специальные светильники.

Для включения осветительного прибора применяется электромагнитная (ЭмПРА) или электронная (ЭПРА) пускорегулирующая аппаратура. Основным элементом ЭмПРА является дроссель, выполняющий функцию балластного сопротивления. Конструктивно он представляет собой катушку индуктивности, включенную последовательно в цепь с лампой дневного света.

Дроссель следит за равномерностью разряда и поддерживает его на одном уровне. В случае необходимости осуществляется корректировка тока. В момент включения происходит сдерживание пускового тока до полного разогрева спиральных нитей. За счет этого они не перегреваются и не перегорают. Далее за счет самоиндукции в дросселе возникает напряжение, от которого и загорается лампа.

Балластное сопротивление должно работать с минимальными потерями мощности, обладать небольшими размерами и весом. Важным требованием является бесшумная работа и величина температуры накаливания, не превышающая 6000С.

Еще одной деталью системы ЭмПРА, играющей важную роль, служит стартер тлеющего разряда. При включении лампы в нем появляется разряд тока, обеспечивающего накал биметаллических контактов. После их замыкания ток в цепи возрастает, и электроды начинают разогреваться.

Через определенное время контакты стартера остывают и цепь размыкается. В этот момент из дросселя на электроды подается высоковольтный импульс, что приводит к появлению между ними дугового разряда. Под его воздействием появляется ультрафиолетовое излучение, а люминофор, нанесенный на стекло, начинает светиться в видимом спектре, то есть лампа загорится.

Люминесцентные светильники нового поколения оборудуются ЭПРА – электронной пускорегулирующей аппаратурой (рис. 3). Срок службы и коэффициент полезного действия таких ламп существенно увеличился. В режиме свечения они могут работать даже с перегоревшей спиралью, в отличие от традиционных ЭмПРА. Кроме того, в современных схемах отсутствуют стартеры.

Балласты электронного типа считаются дорогими и достаточно сложными в ремонте, поэтому в большинстве случаев они полностью заменяются новыми изделиями.

Основные причины выхода из строя

Все люминесцентные светильники изготавливаются в виде стеклянной колбы различной конфигурации. С внутренней стороны она покрыта люминофором, преобразующим волны ультрафиолетового спектра в видимый дневной свет. В процессе эксплуатации хрупкое кварцевое стекло становится менее прозрачным и теряет свои качества.

Из-за внешних механических воздействий на поверхности колбы и в ее внутренней структуре образуются микротрещины, через которые внутрь герметичной полости может попасть воздух. На концах трубки возникает оранжевое свечение, а сам прибор перестает работать. Это одна из основных причин появления перегоревших ламп дневного света.

Процесс свечения обеспечивается за счет тлеющего разряда внутри колбы. Эти разряды создаются на катодах лампы, изготовленных в виде спиральных вольфрамовых нитей накаливания, разогреваемых действием электрического тока.

Для увеличения срока службы и стабилизации тлеющего разряда они покрываются активным щелочным металлом, который со временем осыпается при постоянных включениях и выключениях. В результате, катод перегревается и быстро выходит из строя. Его эмиссия заметно снижается, то есть уменьшается количество электронов, испускаемых с поверхности. Они уже не могут поддерживать рабочий уровень тлеющего разряда.

Иногда сбои в работе приводят к появлению электрической дуги и сильному нагреву вольфрамовых электродов. Под действием высокой температуры наступает перегорание и разрушение нитей. Как следствие, на стекле становится заметен потемневший люминофор. Это означает, что перегорела люминесцентная лампа.

Неполадки ламп дневного света внешне представляют собой невозможность включения, кратковременные мерцания перед включением, длительное мерцание без последующего включения. Неисправный светильник начинает гудеть и мерцать при нормальном рабочем режиме или просто не загорается.

Нередко работоспособность нарушается при некачественном взаимодействии между штырьками лампы и контактами патрона. Это происходит из-за постепенного износа и окисления держателей. Для очистки рекомендуется использовать мелкую наждачную шкурку, ластик или спиртосодержащую жидкость. При необходимости контактные пластинки подгибаются или полностью меняются.

Необходимо учесть, что лампа дневного света перестает нормально работать и не включается при температуре воздуха минус 500С и ниже, а также при перепадах напряжения свыше 7%.

Подобные сбои в работе оказывают негативное влияние на здоровье человека, в первую очередь, на его зрение. Поэтому рекомендуется провести диагностику, выявить неисправность и по возможности отремонтировать светильник. Этот процесс можно ускорить за счет использования заведомо исправной лампы. Если она загорится, значит светильник исправен.

Проверка нитей накаливания (спиралей-электродов)

Одной из причин неисправности становятся электроды, выполняющие функцию нитей накаливания. Они помещаются внутрь трубки, наполненной газом, а их концы припаяны к контактным ножкам цоколя, выходящим наружу. Проверка целостности спиралей проводится с помощью мультиметра или тестера, подключаемого к выводам, расположенным на одном из концов стеклянной колбы.

Для проведения замеров на мультиметре устанавливается режим измерения сопротивления с минимальным пределом или режим прозвонки. Проверка спиралей осуществляется поочередно, на обоих концах. Если спирали находятся в исправном состоянии, загорится контрольная лампа, а зуммер будет производить звуковые сигналы. На дисплее мультиметра высветится сопротивление в пределах 5-10 Ом.

В случае отсутствия звуковых и световых сигналов и наличия сопротивления со знаком бесконечности, можно предположить обрыв одной из спиралей, при котором лампа уже не будет работать и должна быть заменена.

Тестирование дросселя

В том случае, когда предыдущая проверка не дала результата, проверяется дроссель, относящийся к наиболее устойчивым элементам лампы. Он ломается намного реже остальных деталей, однако нельзя полностью исключить его возможную неисправность.

Дроссель люминесцентной лампы по своей сути является обычной катушкой индуктивности, внутри которой находится ферромагнитный сердечник с высокой магнитной проницаемостью. Он входит в состав ЭмПРА и при включении лампы так же как и стартер участвует в разогреве катодов и создании высоковольтного импульса. За счет ЭДС самоиндукции внутри колбы создается тлеющий разряд.

После отключения стартера, дроссель за счет своего индуктивного сопротивления поддерживает ток разряда на нужном уровне, обеспечивающем стабильную ионизацию смеси газа и ртути. За счет индуктивности и сопротивления дроссель защищает электроды от перегрева и перегорания под действием переменного тока.

Основными неисправностями данного элемента может стать обрыв или перегорание обмотки, а также нарушения межвитковой изоляции. Обе поломки выявляются с помощью мультиметра, подключенного к выводам дросселя и настроенного на замер сопротивления. Если на табло высвечивается знак бесконечности, следовательно обмотка оборвана или сгорела. Предвестником перегорания чаще всего становится неприятный запах, появляющийся во время работы дросселя.

Если же сопротивление имеет малую величину, то в большинстве случаев оказывается нарушенной изоляция проводников, что в свою очередь приводит к межвитковому замыканию или замыканию обмотки с сердечником.

Проверка работоспособности стартера

Наряду с другими элементами люминесцентной лампы, проверяется исправность стартера. В любом случае корпус светильника следует вскрыть и провести визуальный осмотр внутреннего пространства. Если обнаружены почернения, то это прямо указывает на имеющуюся неисправность. Поэтому придется проверить люминесцентную лампу, в том числе и сам стартер.

Дело в том, что этот компонент наиболее часто подвержен поломкам. Его элементы испытывают постоянные механические нагрузки в условиях многократных перепадов температур. После того как корпус стартера оказывается разобран следует провести осмотр внутренней схемы. Неисправный конденсатор имеет вздутия или бывает полностью разрушен из-за скачков сетевого напряжения. При отсутствии внешних повреждений конденсатор следует проверить мультиметром.

Тестирование конденсатора выполняется на его выводах в режиме омметра, с выставлением на шкале максимального предела замеров сопротивления. При нормальном состоянии данного элемента на табло мультиметра будет показан знак бесконечности. Если же сопротивление составляет 2 Мом и ниже, то возможно недопустимое значение тока утечки в конденсаторе. В домашних условиях не всегда удается точно прозвонить и проверить состояние стартера, для этого рекомендуется воспользоваться исправным светильником. Стартер, оказавшийся неисправным, подлежит замене.

Проверить исправность стартера возможно не только тестером. Для этого стартер аккуратно извлекается из гнезда, без нарушений других элементов схемы. После этого включается питание и контакты в гнезде стартера коротко замыкаются исправным, хорошо изолированным инструментом. Если все остальные детали схемы исправны, то лампа должна загореться.

Светодиодная или люминесцентная лампа…
Садовые светильники на солнечных бата…
Розетки для наружной проводки
Установка распаечных коробок

В помощь начинающему электрику

Проверка автомобильных лампочек и радиоламп тестером

Тестер или мультиметр – прибор, предназначенный для определения исправности электрических устройств и радиодеталей: проводников тока, батареек, аккумуляторов, переключателей, лампочек. Другие названия устройства – мультиметр, реже авометр. Существуют разные варианты тестеров с отличающимся набором функций. В самом простом варианте мультиметр объединяет возможности амперметра, вольтметра и омметра. Такое устройство можно использовать как тестер для проверки ламп, электроцепей или радиодеталей. С его помощью можно провести основные измерения характеристик электроприборов и их отдельных элементов, выявить имеющиеся нарушения целостности электрической цепи. Более сложные мультиметры оснащены разнообразными дополнительными функциями.

Применение тестера

Один из вариантов прикладного использования мультиметра – проверка лампочек. Для этой процедуры достаточно использовать простейший вариант прибора.

Какую же информацию можно получить с помощью мультиметра? Существует несколько показателей работы лампочек, отображаемых на этом приборе:

  • пригодность лампочки – нарушение целостности электрического соединения приводит к прекращению прохождения тока;
  • определение сопротивления лампочки;
  • расчет ее мощности по показанному мультиметром сопротивлению.

Таким образом, можно проверить основные характеристики осветительного прибора, и понять, пригоден ли он к дальнейшему применению.

Режим прозвонки

Чтобы проверить работоспособность лампочки, достаточно знать, как прозвонить обычную электроцепь. Для этого переключатель устанавливают в режим «прозвона» – в положение с символом диода. Затем одним щупом касаются центрального контакта цоколя, вторым – боковой поверхности с резьбой. Сигнал сработает, если сопротивление меньше 50–70 Ом. Это указывает на хорошую электропроводимость цепи и означает, что лампочка исправна.

Проверка дуговой ртутной лампы

Светильник с дуговой ртутной люминофорной лампой (ДРЛ) обычно можно встретить на улице или в заводском цехе. Для определения работоспособности прозванивают дроссель – устройство, ограничивающее ток, питающий ДРЛ. Если схема была разорвана, то сопротивление будет неограниченно большим, что и покажет прибор. Если имеется потеря изоляции, ведущая к короткому замыканию, показатель повышается незначительно. В случае наличия замыкания в обмотке дросселя, сопротивление не меняется.

Если при проверке тестером дросселя проблем не было выявлено, то дуговая лампочка может не функционировать по причине неисправностей в системе подачи электроэнергии, к примеру, из-за окисления контактов. Принцип работы светильника очень простой, поэтому неисправности непосредственно в лампе ДРЛ встречаются редко.

При тестировании ДРЛ следует соблюдать значительную осторожность. При нарушении целостности стеклянной колбы, содержащей газ под высоким давлением, пары ртути могут распространяться на большие расстояния, загрязняя помещение.

Тестирование автомобильной лампочки

Автолюбителей часто интересует вопрос о том, как проверить лампу, вышедшую из строя. В чем причина неисправности? Проблема может заключаться не только в автомобильной лампочке, но и в электропроводке или патроне. Проверка мультиметром проводится так же, как и при тестировании обычных лампочек с нитью накаливания. Рекомендуется следующий порядок действий:

  • после остывания электронной системы автомобиля демонтировать неработающие лампочки;
  • установить тестер в положение проверки минимального сопротивления;
  • приложить щупы к контактам, чтобы проверить лампочки с помощью мультиметра.

Если прибор измерит сопротивление, то лампочки исправны, если же на экране будут буквенные символы или знак бесконечности – это свидетельствует об их непригодности.

Анализ работоспособности диодов и радиоламп

Радиолампы представляют собой ламповые диоды, использовавшиеся ранее в электронном оборудовании. В настоящее время они заменены полупроводниковыми диодами. Тестирование любых видов диодов, в том числе радиоламп, с помощью мультиметра имеет свои особенности.

Диод имеет два полюса – катод и анод. Если поднести положительный щуп мультиметра (красный) к аноду, а отрицательный (черный) к катоду, ток будет протекать через диод. На экране мультиметра отобразится пороговое напряжение, величина которого может колебаться от 200 до 800 мВ. Если поменять местами щупы тестера, ток протекать не будет, поскольку диод обладает однонаправленной проходимостью. В случае с радиолампой сопротивление нужно определять между нитью накала, являющейся катодом, и управляющей сеткой.

Существует специальный прибор, называемый тестер ламп. Такие анализаторы, обеспечивающие проверку электроламп, снабжены приспособлениями для испытания вакуума. Эти приборы полезны не только как испытатели, но и как анализаторы для быстрого измерения рабочего режима ламповых элементов любого радиоаппарата.

Испытатель несколько отличается от мультиметра, он больше похож на стенд и позволяет измерять анодно-сеточные характеристики. На нем присутствуют гнезда для лампочек, миллиамперметр, работающий как милливольтметр, а также источники питания. Для любителей старых ламповых приемников тестер становится отличным помощником в работе.

Чаще всего эта процедура должна предшествовать установке новой светотехники. К примеру, водитель решил заменить штатные лампы накаливания на ксеноновые. Чтобы убедиться, что сама лампа исправная, её нужно протестировать. Это можно сделать при помощи стандартного мультиметра, который продается в любом магазине электроники. Что касается вопроса выбора, то здесь подойдет обычный китайский тестер. Да, отклонение там есть, но нам нужно просто проверить работоспособность лампочки.

Инструкция как проверить автомобильную лампу тестером

Чтобы узнать, исправна ли автомобильная лампочка или нет, нам нужно выполнить следующие действия:

  1. Перед тем, как вытаскивать лампочку из фары или другой оптики автомобиля, подождите, пока все электронные системы остынут. Ведь там можно обжечься.
  2. После этого лампочку нужно доставать. Демонтаж фар достаточно простой. После раскручивания оптики, перед вами будет ряд лампочек – находим неисправную (или неисправные) и вынимаем. В современных автомобилях лампочки вынимаются достаточно просто, но можно встретить и старый вариант крепежа. Доставать все нужно очень аккуратно – обычно лампочки посажены на резьбу или через штекер.
  3. Удобно разместившись за столом, положите перед собой автомобильные лампочки и подготовьте тестер: нужно выставить положение измерения минимального сопротивления. Из-за того, что приборы отличаются, риска эта может находиться в разных местах, но иногда определить нужную опцию можно просто по названию (Min R или аналогичные символы).
  4. Щупами притрагиваемся к лампочке – к месту подключения. Важно, чтобы щупы в это время не касались друга, иначе результат будет неверным. Тестер сразу выдает результат на дисплей – если сопротивление измеряется в цифрах (20, 50, 100 или даже 0,05 Ом), то лампочка работает и никаких обрывов нет. Если же она неисправна, то на дисплее будет знак бесконечности или буквы.
  5. Проводим демонтаж в обратном порядке уже с новыми лампами.

Процесс проверки автомобильной лампы тестером

Допустим, в автомобильной фаре перестала светить лампочка – как узнать причину? Возможно всему виной электропроводка, патрон или выключатель. Кстати, при помощи тестера можно легко проверить не только лампочку из автомобиля, но и любую лампу дома. Также тестер может функционировать с ксеноновыми лампами или лампами накаливания. Для проверки нам нужно поставить переключатель тестера в положение для замера минимального сопротивления, а затем концами щупа прикоснуться к выводам цоколя.

Сопротивление обычной лампочки накаливания из светильника равно 51 Ом. Это говорит о том, что электроника функционирует. Если бы какая-либо нить в лампе была оборвана, прибор бы продемонстрировал знак бесконечности на своем дисплее. Сопротивление исправной 12-вольтной лампочки с мощностью 100 ватт, которая обычно стоит в автомобильной оптике, составляет примерно 0,05 Ом.

Если вы вытащите исправную лампочку сразу после выключения фар, то вы заметите, что её сопротивление в несколько раз больше, чем в холодном состоянии – это тоже нужно учитывать. Кстати, это ответ на вопрос, почему лампочки выходят из строя во время включения. Ведь пока лампочка не нагрелась, через неё проходит ток, который превышает номинальный в несколько раз.

Особенности проверки автомобильной лампы тестером

Если же лампочка работает исправно, но при этом не горит, то проблема кроется более глубоко — придется разбирать электропроводку. Не рекомендуется делать это самостоятельно, т.к. там высокое напряжение — лучше обратиться в автомастерскую и не рисковать своим здоровьем и исправностью электронной основы авто.

Добавить комментарий

Закрыть меню