Масло в интеркулере

Почему турбина гонит масло. В интеркулер (также во впускной коллектор), либо в глушитель. Разберем все варианты

  • Разместил Avto-blogger
  • Дата: 20 декабря 2015 в 15:22

У меня уже очень много статей про турбины автомобиля, пора делать целую рубрику, однако вопросы все «идут и идут» — что делать, сейчас все больше машин с турбинами. Я стараюсь структурировать эти вопросы и сегодня, пожалуй, самый ожидаемый ответ – будем говорить, почему гонит масло? Сразу скажу это действительно большая тема, потому как гнать может как во впускной коллектор (иногда даже доходит до интеркулера), либо может «выкидывать» уже в сам глушитель. Почему такое происходит и как с этим бороться? Подробная инструкция и видео в конце …

СОДЕРЖАНИЕ СТАТЬИ

Этот вопрос действительно широкий потому как причин может быть просто масса. Но для начала я вам хочу напомнить конструкцию турбины и причем тут масло. Конечно, я уже писал подробно — как работает турбина, но немного повторюсь.

Напомню о строении

Итак, если утрировать, то конструкция просто примитивная. Это вал, на котором висят два «вентилятора» (гребенки с лопастями). Один такой «вентилятор» раскручивается от отработанных газов, другой соответственно тоже начинает крутиться, потому как сидит на этом же валу и ему передается крутящий момент. Вращения могут достигать просто запредельных оборотов, например 200 – 250 000 в минуту! Соответственно этот вал должен иметь хорошие подшипники, чтобы выдержать такую нагрузку (нужно отметить, что обычно их всего два, и один опорный). НО как показала практика, ни один сухой подшипник не выдерживает такое вращение (идет большой нагрев), он просто рассыпается – его клинит, турбина выходит из строя. Поэтому нужно было — как то забирать лишнюю температуру, а также улучшить скольжение. Все это прекрасно делает моторное масло, поэтому к валу подвели два канала (на каждый подшипник) от поддона двигателя, по которым уже идет масло – СМАЗЫВАЕТ и ОХЛАЖДАЕТ подшипники! Таким образом, добились высоких оборотов турбины, а соответственно увеличили производительность и надежность, сейчас такой принцип применяется до сих пор.

Все вроде хорошо, но такая конструкция породила большое количество побочных проблем, которые не удается решить даже большим гигантам. Самая нерешаемая это то — что турбина гонит масло. Так как же это происходит?

Про герметичность

ЗАМЕЧАНИЕ! Ребята даже вполне исправная турбина будет расходовать масло, это нормально в современных реалиях! К сожалению, такова конструкция такого двигателя, и чем больше вы будете «топить» гашетку, тем больше будет расход, это своего рода зависимые постоянные. Также стоит отметить, что «нормальная» величина расхода масла примерно 1,5 – 2,5 литра на 10000 километров, если у вас больше «3», то нужно проверить агрегат.

Так за счет чего это происходит? Достаточно подумать и все встанет на свои места. Как я писал сверху к подшипникам подходит два масляных канала, один на горячую ее часть, другой на холодную, они смазываются и это смазка опять уходит в двигатель. Но вот как подшипники герметизированы?

Сразу хочу сказать подшипник не должен соприкасаться с крыльчаткой, которая раскручивается, иначе масло будет напрямую вытекать во впускной коллектор – с одной стороны и в глушитель с – другой. Поэтому между подшипником и крыльчаткой есть так называемые «запорные кольца». Давление, которое создается крыльчатками (а оно больше атмосферного), как бы «подпирает» эти кольца, не давая маслу уходить в больших объемах, конечно, оно может немного сочиться, но это опять же в пределах нормы (это расход 1,5 литра на 10000 км).

Надеюсь, понятно объяснил, теперь подходим к неисправностям.

Почему гонит масло?

Если что-то нарушает нормальную работу – подсоса (отдачи воздуха), подачи масла, вращения вала, работу подшипников – турбина начинает гнать масло. И знаете нужно для начала разобраться, почему такое происходит, иначе после замены турбины на новую, масло также будет уходить! НЕ ВСЕГДА ПРИЧИНА В САМОМ АГРЕГАТЕ!

Для начала косвенные причины, которые можно устранить самому. Ведь важно понимать что зачастую «гон» масла происходит из-за нарушения давления, то есть запорные кольца не справляются с задачей, давление от крыльчаток нарушается, и масло идет куда «легче». Это говорит об увеличенном давлении на выходе из турбины, которое нужно убирать.

ИТАК:

1) Проверяем воздушный фильтр, он должен быть чистый, вообще рекомендую менять «воздухан» чаще положенного срока на 10 %. Если он забит, меняем либо прочищаем. ЭТО ВАЖНО!

2) Если сам фильтр в порядке, смотрим на коробку и заборный патрубок, бывает дело в них. Например, набился пух (от тополей).

3) Проверяем герметичность корпуса (крышки) фильтра, ели нет герметичности, то попадания в турбину песка, пыли и т.д., практически на 100% обеспечено, а это в свою очередь работает как «образив» — очень быстро убьет агрегат.

4) Если вы заметили, что герметичность была нарушена. То ВАЖНО, снять все патрубки и прочистить – промыть их до турбины, а также нужно снять и промыть прочистить от турбины до впускного коллектора, сам коллектор также нужно чистить, скорее всего там грязь – 100%.

Воздушный фильтр для турбины очень важная составляющая, ведь в основном гонит масло только из-за того что нарушено давление из-за забитого фильтра или патрубков! Поэтому заведите себе правило, меняем фильтр через 8 000 км, также просматриваем состояние корпуса на трещины, грязь и прочее. Запомните чистый фильтр, это уже прибавляет жизни вашему агрегату.

Масло

Вторая по распространенности причина, это само масло – если оно некачественное, либо вы меняете его редко, поломка «не за горами». Почему такое происходит.

1) Масло должно быть жаростойким, оно специально продается для турбин, оно не должно пригорать, потому как — смазывая подшипники, оно сталкивается с высокими температурами. Если залить обычное, то оно «закоксует» все каналы смазки подшипников, и они просто выйдут из строя. ИТОГ – подбираем правильно!

2) Интервал замены. Даже самое лучшее масло изнашивается, начинает терять свойства – пригорать. Поэтому частая его замена также убережет вас от «закоксовывания» масляных проходов. Если ваш производитель указывает интервал в 10 – 12 000, то меняйте хотя бы на 10% чаще, например в 9 – 10 тысяч, поверьте — ресурс у турбины увеличиться.

3) Патрубки. Зачастую причиной являются подводные масляные патрубки, если вы долго не меняли смазку, то они также забиваются. Даже если вы затем меняете турбину, то патрубки также в обязательном порядке меняем, либо прочищаем, это важно!

Если масло в интеркулере (во впускном коллекторе) – скорее всего, забит воздушный фильтр (его прилегающие конструкции), либо забиты масленые трубки. Возникла разность в давлении.

Если масло в глушителе – по сути такие же проблемы, первым делом «воздухан» и патрубки масла, само масло! Я бы даже снял турбину и прочистил ее и все прилегающие масляные и воздушные подводы.

Конечно верхние причины не панацея, возможно у вас сам агрегат уже износился.

Сложные причины:

Что и говорить, если вы нарушили правила эксплуатации, то ваш турбина выйдет из строя очень быстро.

1) Сломало крыльчатку, говорит о большом люфте на валу.

2) Гонит масло больше нормы, говорит об износе подшипников.

3) Заклинило вал, вообще не вращается крыльчатка.

По всем этим причинам она меняется. Но это уже сложные случаи, некоторые могут возникнуть только тогда – когда она уже действительно износилась, просто пришло время.

В заключении подводим итог, если гонит масло, то это еще не значит вышла из строя, проверяем воздушные фильтра, масло, патрубки. Сейчас небольшое видео, для понимания.

На этом заканчиваю, будут еще полезные статьи.

(13 голосов, средний: 3,92 из 5)
Рубрика: Тех.часть

    Алексей

    Подскажите пожалуйста! Турбины стали гнать масло в интеркулер, снял Турбины отремонтировали, ставлю назад через 50км опять полные кульки. Сняли Турбины повезли на стенд гоняли их пол дня не грамма масла не погнали они. Не можем разобраться в чем причина что за проблема.

    Александр

    У меня такая проблема, после замены прокладки гбц, турбина стала гнать масло.
    Поменяли картридж турбины, поставили новый, проблема не исчезла, масло во впускном коллекторе.
    Всё новое при замене и фильтра и масло.
    Может подскажете куда копать?
    Заранее благодарю

    Андрей

    Добрый день!
    Мондео 2015 1.5 Ecoboost 182 л.с., 45 000 км пробега.

    Рукожопными мастерами было перелито масло выше уровня на 1,5л. На холодную дым шёл из выхлопной, как у паровоза минут 3-5. Проехала машина с переливом около 400 км. Начала подтекать турбина, патрубок перед дросселем тоже чуток масла пустил.

    Привели уровень в норму. Теперь на холодную (уже почти 4000 км или 1,5 месяца) по утрам каждый день дымит секунд 7-10 густым сизым дымом, а несколько раз и не дымела вовсе. Трубку и прокладку слива турбины заменил. Не помогло. Течет. Масло израсходовало на 4000км 300г.

    Подскажите пожалуйста, что является причиной такого дыма и какова причина утечки масла наружу турбины?

    Турбину я уже купил, но причина, как это бывает в большинстве случаев, может быть и не в ней.
    Заранее благодарю.

    Сергей

    Добрый день, подскажите в чем ещё может быть проблема, Опель Астра J 1.6 турбо, гонит масло в интеркулер и в выхлопную, сделал турбину проверили на стенде все нормально, поменял воздушный фильтр, масленный, новое масло Трубки на подачу , сливную трубку , движок разобрал там все нормально , и все равно гонит , в чем может быть проблема?

    Константин

    В Картер подаётся воздух со впуска для вентиляции и удаления прорывающихся туда выхлопных газов и далее этот воздух отводится, очищается от Масла и подаётся обратно на впуск для догорания. Так вот если в системе очистки картечных газов забиты маслоотделители или что то не корректно работает, то и в интеркулере и в дросселе и даже во впускном коллекторе будет масло.

тел.: +7 495 1087345
факс.: +7 495 1087345
office@trans-service.org

Судовые двигатели внутреннего сгорания

Индицирование двигателей

Конструкция индикатора с цилиндрической пружиной показана на рис. 3. Корпус 2 индикатора представляет собой массивную отливку, которая служит площадкой для крепления всех частей прибора. Правая нижняя часть корпуса оканчивается свободно сидящей накидной гайкой 19, при помощи которой индикатор плотно соединяется с индикаторным краном цилиндра двигателя. В этой же точке основания сделана сквозная расточка, в которую установлена бронзовая втулка 17 и стальной поршенек 18, насаженный на шток 15. Шток верхним концом соединяется с последним витком цилиндрической пружины 13 при помощи гайки 12. В основании цилиндрической пружины имеется стальная обечайка с внутренней резьбой, которой она наворачивается на верхнюю часть крышки 11 индикатора. Крышка 11 крепится гайкой 16. Отверстие в крышке служит направляющей для штока. На верхней части крышки укреплена система шарнирных рычагов 14, при помощи которых шток соединен с пишущим устройством 21.

С левой стороны площадки на вертикальной оси 6 установлен барабан 9. Пружина 7 одним концом закреплена на оси, а другим — на основании барабана. Основание барабана с наружной стороны имеет желобок, на который наматывают в виде спирали два витка шнура 5. Шнур пропускают через ролик 4, поворотную обойму 22 которого крепят к корпусу индикатора гайкой 3. Конструкция обоймы и способ ее крепления к корпусу позволяют ролику занимать любое положение относительно корпуса прибора.

Бумажный индикаторный бланк из специальной мелованной бумаги закрепляют на барабане 9 с помощью двух пластинчатых пружин 8. Для смазки втулки и оси барабана предусмотрена тавотница 1. Пишущее устройство вместе с системой шарнирных рычагов может поворачиваться на некоторый угол при помощи установочной винтовой рукоятки 20, опирающейся на стойку 10. Этой рукояткой регулируется степень нажатия карандаша на индикаторный бланк. В процессе индицирования двигателя давление газов в рабочем цилиндре передается на поршенек 18 индикатора, который совершает восходящее движение, растягивая пружину 13 и перемещая пишущее устройство.

Рис. 4. Индикаторная цилиндрическая пружина.

Выбор цилиндрической пружины производят из условий наибольшего давления в цилиндре двигателя, при котором предполагается снятие индикаторной диаграммы (рис. 4).

Для индицирования двигателей с частотой вращения более 500 об/мин применяют индикаторы со стержневыми пружинами. Кинематическая схема такого индикатора приведена на рис. 5, а конструкция индикатора — на рис. 6. Основные узлы индикатора — корпус 2, поршень 5, пишущее устройство 4, барабан 3, стержневая пружина 1 и запорный кран 6. Принципиальное отличие рассматриваемого индикатора от индикатора с цилиндрической пружиной заключается главным образом в конструкции пружины. Цилиндрическая пружина работает на растяжение, а стержневая пружина — на изгиб как консольная балка.

Рис. 5. Кинематическая схема индикатора со стержневой пружиной.

Из рисунка видно, что на конце пружины имеется шарик, который входит в выточку штока поршенька. При вертикальном перемещении поршенька под действием давления газов свободный конец пружины 1 также перемещается на некоторую величину в зависимости от жесткости пружины. Пишущее устройство работает так же, как и в индикаторе с цилиндрической пружиной. Запорный кран 6 служит для сообщения полости индикатора с рабочим цилиндром двигателя. К индикатору прилагается комплект стержневых пружин различной жесткости.

Рис. 6. Индикатор со стержневой пружиной.

Кроме нормальных индикаторных диаграмм с помощью индикаторов можно получить диаграммы развернутые, смещенные, снятые слабыми пружинами и так называемые «гребенки давления».

Развернутые индикаторные диаграммы снимают с двигателей, не имеющих ходоуменьшителей. Для снятия таких диаграмм применяют механические индикаторы пружинного типа, в которых барабан с бумагой получает непрерывное вращение от привода, независимо от вала двигателя, например, от часового механизма. Такой индикатор устанавливают, как и обычный, на индикаторный кран. На развернутой индикаторной диаграмме зафиксированы мертвые точки, атмосферная линия и масштаб давления. Для определения среднего индикаторного давления нужно развернутую диаграмму соответствующим графическим способом перестроить в координаты pV (рис. 7).

Рис. 7. Развернутая индикаторная диаграмма: 1 — сжатие; 2 — горение и расширение.

Смещенные индикаторные диаграммы получают сцеплением шнура индикатора с ходоуменьшителем соседнего цилиндра (при условии заклинки кривошипов коленчатого вала под углами 120 и 90°). В данном случае одно из крайних положений поршня будет соответствовать примерно середине смешанной диаграммы. В этот момент барабан индикатора вращается с наибольшей угловой скоростью.

В результате участок диаграммы рφ, соответствующий процессу сгорания, получается искусственно растянутым, что позволяет проанализировать изменение давления во время горения и выявить недостатки в работе топливной аппаратуры. Кроме того, по смещенной диаграмме можно определить рc, pz, а также сделать вывод об относительной величине угла опережения подачи топлива в цилиндре двигателя (рис. 8).

Рис. 8. Смешанная индикаторная диаграмма: 1 — сжатие; 2 — горение; 3 — расширение; 4 — расширение без горения.

На диаграмме точка С соответствует началу процесса горения топлива. Чтобы положение этой точки было более отчетливым, на диаграмме вычерчивают линию расширения без горения (показана штриховой линией), т. е. при выключенном топливном насосе. Если на смещенную диаграмму нанести две вспомогательные линии (показаны штрихпунктиром) и таким образом зафиксировать положение точки С, а также величины давления рc и pz, то очевидно, что любое отклонение от такой эталонной диаграммы станет сразу же заметным. Подобная диаграмма должна быть снята с цилиндра, на котором точно отрегулированы фазы газообмена и подачи топлива в соответствии с инструкциями завода-изготовителя.

Индикаторные диаграммы, снятые индикатором со слабыми пружинами, применяют для анализа процессов наполнения и выпуска четырехтактных двигателей, а также продувки двухтактных двигателей. На рис. 9 показана нижняя часть индикаторной диаграммы четырехтактного двигателя, снятая слабой пружиной.

Рис. 9. Нижняя часть индикаторной диаграммы четырехтактного двигателя: 1 — всасывание; 2 — выпуск.

Гребенки давлений снимаются в тех случаях, когда на двигателе нет индикаторного привода или когда отсутствует необходимость в определении индикаторной мощности, а требуется определить степень загрузки отдельных цилиндров. На рис. 10 показан индикаторный бланк, на котором вычерчены гребенки давлений сжатия рc и давлений сгорания рz шестицилиндрового двигателя. Для этого барабан индикатора поворачивают вручную за шнур, прижимая пишущее устройство к бланку. Очевидно, что ординаты «пик» при выключенной и включенной подаче топлива будут соответственно в масштабе пружины указывать величины давлений газа рc и рzразличных цилиндров.

Рис. 10. Гребенки давлений.

Номера цилиндров указаны внизу цифрами 1 — 6. От атмосферной линии р0 в масштабе пружины индикатора откладывают наименьшее и наибольшее давления конца сжатия (рc minи pc max) и давления сгорания (pz min и pz max), указанные в паспорте двигателя. Если в паспорте указаны только средние значения рc и рz, то отклонения от них допускаются в пределах ±2,5 %; если даны нижние значения тех же давлений, то отклонения допустимы не более ±5 %.

Sign in Добро пожаловать! Войдите в свою учётную запись Ваше имя пользователя Ваш пароль Password recovery Восстановите свой пароль Ваш адрес электронной почты Пароль будет выслан Вам по электронной почте.

Интеркулер: Для чего он нужен, и как работает

Все японские турбовые автомобили, за совсем уж редким исключением, выходя с заводского конвейера, получают интеркулер (охладитель воздуха). Однако, в отличие от подобных автомобилей других производителей, японцы предпочитают ставить охладитель либо под капот, либо в крыло, но никак не в передний бампер. В последнем случае охладитель будет фронтальным. Подобные кулера называются FMIC — front mount intercooler. О них сейчас и поговорим.

Итак, турбина сжимает воздух, создает давление и те самым повышает температуру этого воздуха. Более того, чем выше температура воздуха в атмосфере, тем больше нагревает его турбина при сжатии. Нагретый воздух поступает во впускной коллектор. Чем сильнее он нагрелся, тем меньше его плотность, а вместе с тем в нем меньше молекул кислорода. Следовательно, в смесь поступает меньше бензина, а значит и мощность будет меньше. Обычные подкапотные или «крылатые» интеркулеры плохо обдуваются и имеют небольшую площадь. Более того, подкапотные кулеры еще и нагреваются от двигателя. Ситуация особенно усугубляется в летние жаркие месяцы.

Выбирать интеркулер нужно под определенную мощность конкретного автомобиля. При этом стоит брать его с запасом в 100-200 лошадиных сил. Благодаря такому шагу, получится избежать ненужных потерь мощности, а на лаг все это не окажет никакого влияния. Патрубки и трубы следует выбирать в соответствии с диаметром дроссельной заслонки выпускного коллектора. Стоит также учитывать размер выходного отверстия на тот случай, если заслонок несколько.

В идеальном варианте схема подключения должна быть такой, чтобы длина патрубков была как можно более короткой. Диаметр труб, в свою очередь, должен увеличиваться по мере удаления от турбины, а вход в интеркулер нужно стараться сравнять с диаметром дроссельной заслонки. Рекомендуется изолировать теплонепроводящим материалом трубы, идущие под капотом в зонах возможного нагрева.

Сам же интеркулер лучше всего будет установить в переднем бампере, так чтобы он был спереди от основного радиатора двигателя и радиатора кондиционера. Достаточно часто для этого приходится подрезать бампер. Перед кулером рекомендуется поставить сетку, дабы воспрепятствовать попаданию мелких камней и прочих посторонних предметов. Грамотно установленный фронтальный интеркулер сразу же положительно повлияет на мощность автомобиля.

Автомобилистам, и не только начинающим, важно знать, как не сжечь стартер в автомобиле. Это позволит существенно сократить расходы на автомобиль.

Попадание масла в интеркулер дизельного или бензинового ДВС является частой неисправностью, которая присуща исключительно моторам с турбонаддувом. В том случае, если моторное масло гонит в интеркулер, наблюдается снижение мощности двигателя, на различных режимах работы ДВС при нажатии на педаль газа происходят провалы. Данная проблема напрямую связана с особенностями устройства и принципом работы системы наддува посредством турбокомпрессора.

Рекомендуем также прочитать статью об устройстве систем наддува двигателей внутреннего сгорания. Из этой статьи вы узнаете о конструктивных особенностях и схемах нагнетания воздуха при помощи турбокомпрессора.

Что такое промежуточный охладитель

Как известно, принудительный наддув воздуха под давлением позволяет сжечь больше топлива и добиться существенного прироста мощности ДВС без увеличения физического объема цилиндров. Данное решение широко используется практически на всех современных дизельных моторах, а также применяется в конструкции форсированных бензиновых агрегатов.

Интеркулер является составным элементом, который входит в общую схему реализации турбонаддува. Дело в том, что воздух сильно сжимается турбокомпрессором, в результате чего происходит его нагрев. Если сразу подать в цилиндры разогретый воздух, тогда его объема будет недостаточно для эффективного и полноценного сгорания порции топлива. Мощность мотора снижается, расход горючего также заметно возрастает.

Для чего нужен интеркулер

Охладитель представляет собой своеобразный радиатор. Задачей устройства является охлаждение сжатого воздуха перед подачей в цилиндры ДВС. Охлаждение позволяет поместить большее количество воздуха в цилиндр, в результате чего удается сжечь больше горючего. Мощность двигателя при подаче холодного воздуха под давлением оказывается намного выше. Местом установки интеркулера закономерно выступает участок после турбины. Использование охладителя на дизеле позволило добиться прироста мощности, снизить токсичность отработавших газов, получить полное сгорание топливно-воздушной смеси, уменьшить расход топлива. Дизельный мотор с турбонаддувом стал более оборотистым, возросла моментная характеристика «на низах» и КПД двигателя, максимальная скорость дизелей стала выше.

Установка интеркулера на дизельный мотор обусловлена тем, что двигатели данного типа крайне требовательны к температуре рабочей смеси по сравнению с бензиновыми ДВС. Охладитель способен снизить температуру наддувочного воздуха до 55-70 градусов Цельсия.

Охлаждение воздуха в системе может происходить по следующим схемам:

  • воздушное охлаждение;
  • жидкостное охлаждение;
  • комбинированная схема;
  1. В первом случае воздух нагнетается турбокомпрессором и далее проходит по сотам интеркулера, отдавая избытки тепла в атмосферу. Данная схема напоминает работу радиатора системы охлаждения двигателя.
  2. Охлаждение по второй схеме предполагает прохождение воздуха через устройство, заполненное жидкостью для охлаждения. Подобное решение сложнее конструктивно и дороже, так как требует установки дополнительного насоса для прокачки жидкости, а также отдельных электронных блоков управления.
  3. Комбинированное охлаждение используется в конструкции турбонаддува на высокофорсированных гоночных автомобилях. Схема охлаждения надувочного воздуха в таких машинах включает в себя сразу несколько интеркулеров, одни из которых работают по принципу воздушного охлаждения, а другие представляют собой варианты жидкостных радиаторов. Охладители в комбинированных схемах задействуются последовательно.

Рекомендуем также прочитать статью о том, как правильно охлаждать турбину после интенсивной езды. Из этой статьи вы узнаете об условиях работы турбокомпрессора дизельного двигателя и особенностях эксплуатации для продления ресурса нагнетателя.

Охлаждение по принципу воздух-воздух менее эффективно сравнительно со схемами воздух-вода и комбинированными решениями. При этом главным преимуществом воздушного радиатора является простота и доступность данного решения, что и обусловило повсеместную установку интеркулеров подобного типа на серийные дизельные и бензиновые автомобили.

Диагностика и устранение неисправности

Моторное масло может попадать как в воздушный, так и в жидкостной интеркулер. В результате качество охлаждения наддувочного воздуха снижается, система турбонаддува не обеспечивает должной производительности.

В том случае, если турбина бросает масло в интеркулер, стоит начать с диагностики неисправностей турбокомпрессора. Масло часто гонит на интеркулер в случае проблем с маслопроводом. Указанный маслопровод является сливным патрубком и соединяет турбокомпрессор и картер двигателя. Необходимо визуально оценить состояние элемента на предмет наличия трещин, загибов и т.д.

Маслопровод со временем может деформироваться, уплотнительные элементы также могут прийти в негодность. Пережатый маслопровод будет означать, что в системе турбонаддува создается слишком высокое давление, а масло выдавливается через уплотнительные кольца. В случае обнаружения дефектов рекомендуется полностью заменить деталь и уплотнители. Если маслопровод изогнут, но повреждений нет, тогда решением проблемы может быть простое выравнивание данного элемента и надежная фиксация.

Во время осмотра стоит отдельно учитывать вероятность трещин самого корпуса интеркулера. Если таковые обнаружены, тогда возможно их устранение при помощи сварки. При наличии масла на интеркулере также обязательно производится осмотр воздуховода, который подводит воздух к турбине. Осмотрите элемент на наличие трещин и других дефектов.

Дополнительно понадобится проверить состояние воздушного фильтра. Если воздуховод поврежден и/или фильтр сильно забит, тогда достаточное количество воздуха не поступит в турбину. В турбокомпрессоре образуется разрежение, моторное масло «высасывается», уплотнители разрушаются и смазка попадает в интеркулер. Неисправность устраняется заменой/чисткой фильтра и исправлением дефектов/заменой воздуховода.

Еще одной причиной появления масла в интеркулере и в его патрубке выступает закупорка маслопровода, которая возникает в процессе эксплуатации турбодизеля или турбобензина. Для решения проблемы осуществляется демонтаж маслопровода и его тщательная промывка. Во время очистки необходимо соблюдать осторожность, так как существует риск повреждения стенок маслопровода.

Сильное загрязнение охладителя маслом может указывать на то, что в картере двигателя слишком высокий уровень смазки. Избыток смазочного материала заставляет турбину кидать масло на радиатор охлаждения воздуха. Данная ситуация может возникнуть по нескольким причинам:

  • значительный перелив моторного масла;
  • проблемы с системой вентиляции картера;
  • попадание ОЖ или топлива в систему смазки;

В первом случае будет достаточно удалить лишнее масло из двигателя, оставив в картере рекомендуемый объем. Второй случай относится к более серьезным неисправностям, так как попадание масла через маслопровод в турбину указывает на высокое давление картерных газов. Высокое давление свидетельствует о неисправностях системы вентиляции картера, а также может говорить об износе ЦПГ, разрушении поршневых колец, самого поршня или стенок цилиндра.

Отработавшие газы переполняют картер и начинают выдавливать моторное масло по сливной трубке в турбину, откуда смазка и попадает в интеркулер. Для устранения проблемы может потребоваться очистка системы вентиляции, а также вполне возможна необходимость капитального ремонта ДВС.

Самостоятельная очистка интеркулера дизельного двигателя

После устранения неисправностей, которые привели к выбросу масла в охладитель, необходимо осуществить очистку интеркулера. Данная процедура нужна для того, чтобы воздух нормально охлаждался, а остатки моторного масла в воздушном радиаторе не смешивались с подаваемым турбиной воздухом.

Попадание смеси масла и воздуха в цилиндры снижает эффективность работы дизельного двигателя, приводит к сильному нагарообразованию и коксованию, изменяются условия сгорания топливно-воздушной смеси и т.д. В критических случаях возможно даже возгорание моторного масла в цилиндрах и перегрев дизельного двигателя.

  1. Чтобы почистить интеркулер своими руками потребуется его демонтаж. Очистка от моторного масла предполагает использование специальных клинеров-очистителей, которые широко представлены в продаже. Перед использованием обязательно соберите информацию о том, можно ли использовать выбранное средство для очистки интеркулера конкретного автомобиля.
  2. Не рекомендуется промывать интеркулер бензином или керосином, различными растворителями и другими агрессивными составами. Определенные охладители могут состоять из таких материалов, которые легко разрушаются под воздействием агрессивных средств очистки. В подобной ситуации существует риск полностью вывести устройство из строя.
  3. Что касается воздушных охладителей, для их снятия нужно выкрутить крепежные болты и снять хомуты. Демонтаж жидкостного охладителя потребует тщательного изучения инструкции.
  4. Промывать охладитель необходимо в строгом соответствии с указаниями производителя, которые указаны на упаковке очистителя. После промывки необходимо тщательно смыть остатки химии при помощи проточной воды.
  5. Многие автолюбители для очистки подкапотного пространства используют Керхер. В случае с мойкой охладителя можно также использовать данный способ. Необходимо отметить, что подавать воду нужно строго под небольшим давлением. Соты охладителя достаточно хрупкие, вода может повредить устройство при интенсивной подаче.
  6. Промывку необходимо повторять до того момента, пока из радиатора не начнет вытекать чистая вода. По окончании необходимо хорошо просушить охладитель, чтобы исключить вероятность присутствия воды. Для ускорения процесса сушки интеркулер внутри аккуратно продувают сжатым воздухом с минимальным давлением.
  7. Необходимо также тщательно промыть наружную сторону охладителя от пыли, грязи и остатков моторного масла. Завершающим этапом станет обратная установка очищенного устройства.

Полезные советы и рекомендации

  • Периодическая наружная очистка сот интеркулера является профилактической мерой и позволяет улучшить эффективность работы системы турбонаддува.
  • Появление даже незначительного количества моторного масла в охладителе требует прекращения эксплуатации ДВС до момента устранения причины.
  • Активное использование автомашины с заведомо неисправной системой турбонаддува может привести к более серьезным поломкам силового агрегата.

«Крути мотор» посвящен одному из величайших благ цивилизации — поршневому двигателю внутреннего сгорания. Все про эксплуатацию, сервисное и профилактическое обслуживание бензиновых и дизельных ДВС. Полезная информация по ремонту двигателя и навесного оборудования, методы и способы проведения диагностических процедур. Тюнинг, настройка мотора и грамотный подбор технических жидкостей.

Масло в интеркулере дизельного двигателя – решаем проблему

Масло в интеркулере – это распространенная проблема, которая указывает на неисправность различных элементов в системе турбированного двигателя. Автолюбители часто жалуются на то, что масло гонит в интеркулер, и происходит провал мощности. Причину можно выяснить после детальной диагностики. А чтобы решить данную проблему, необходимо понимать принцип действия турбированных моторов и сопутствующих систем, что позволит правильно определить тип неисправности.

1 Принцип работы интеркулера в системе дизельного двигателя

Сегодня в борьбе за экологичность инженеры ведущих компаний производителей автомобилей стараются максимально увеличить мощность при минимальных затратах. Что же представляет собой данное устройство в системе турбонаддува? Воздух в турбированной системе проходит через нагнетатель и нагревается до высоких температур, что ведет к неравномерному расширению топливно-воздушной смеси и, как следствие, к неполному ее сгоранию.

Устройство в системе турбонаддува

В результате стремительно уменьшается мощность дизельного двигателя, и увеличивается расход топлива. Интеркулер – это промежуточный охладитель (радиатор), который устанавливается после турбины и служит для охлаждения воздуха, который проходит в камеру для смешения и сгорания вместе с топливом. Таким образом, интеркулер обеспечивает дизельному двигателю:

  • повышение мощности,
  • ограничение количества вредных выбросов в атмосферу,
  • уменьшение среднего расхода топлива и повышение оборотистости двигателя.

Интеркулер для охлаждения воздуха

Сегодня интеркулер устанавливается не только на дизели, но и на бензиновые моторы, особенно это практикуют различные тюнинг-ателье. Все интеркулеры на автомобилях делятся на два типа:

  • воздух-воздух. В данном случае воздух под давлением проходит через специальные соты (наподобие радиатора),
  • воздух-вода. Поток проходит через резервуар с холодной водой. Этот тип требует также установки водяного насоса и блока управления.

Независимо от типа интеркулера, попадание масла на данную деталь постепенно приводит к неисправности в работе всей турбированной системы.

2 Причины попадания масла в интеркулер и варианты устранения неисправности

Если турбина кидает определенное количество масла в интеркулер, значит, в системе есть проблема, однако насколько она серьезна, можно понять только после визуального осмотра деталей турбины и других составляющих. Турбина может кидать масло на охладитель по причине неисправного маслопровода, который располагается между турбиной и картером двигателя. Маслопровод представляет собой сливной патрубок, который при визуальном осмотре не должен содержать следов повреждения, быть пережатым и т.д.

Турбина кидает масло в интеркулер

В противном случае возникает повышенное давление в системе, при котором масло гонит через уплотнительные кольца в интеркулер. Сам промежуточный радиатор охлаждения может иметь микротрещины по корпусу, которые устраняются только посредством сварки, никакие герметики и другие материалы не помогут устранить проблему из-за высокого давления в системе (до 5 атмосфер).

Маслопровод изготавливается из жесткого материала, однако с течением времени он может подвергаться деформации. Иногда для исправления проблемы (если турбина кидает не много масла) достаточно выровнять положение трубы, заменить уплотнители или всю деталь в сборе. Еще одна причина, по которой масло может оказываться в интеркулере – это выход из строя воздухоотвода, в котором могут образовываться нежелательные отверстия. Масляный фильтр также может стать причиной наличия масла в системе радиатора-интеркулера, фильтр необходимо своевременно менять. Часто проблема попадания масла решается как раз-таки прочисткой воздухоотвода и заменой фильтра на новый.

Вышедший из строя воздухоотвод

Если при диагностике системы масло в интеркулере появляется в результате превышения уровня масла в картере мотора, значит нарушена вентиляция картера, а значит, проблема и ее решение будет более серьезными и энергозатратными. Если масло кидает в интеркулер по этой причине, то, скорее всего, нарушена герметичность или деформированы уплотнительные кольца цилиндров и поршней. В результате отработанные выхлопы попадают внутрь картера и выдавливают оттуда масло в интеркулер. В этом случае выходом может стать только капитальный ремонт мотора с заменой колец, поршней, сливной трубы, уплотнителей системы и т.д.

3 Очистка детали дизельного двигателя своими руками

Даже если на первом этапе вы определили причину попадания масла в охладительный механизм и частично устранили ее – это не гарантирует нормальную работу системы без чистки интеркулера. Если этого не сделать, масло постепенно будет смешиваться с воздухом, который проходит через охладитель, и загрязнять топливную смесь, что приведет к ухудшению мощности, увеличению расхода и другим неприятным последствиям. Самым «тяжелым» из них может стать перегрев двигателя в результате воспламенения большого количества масла, особенно это актуально в летнее время года для дизельных двигателей.

Попадание масла в охладительный механизм

Очистка интеркулера происходит с помощью специальной автохимии после полного демонтажа детали из системы двигателя авто. На большинстве автомобилей стоит интеркулер системы «воздух-воздух». Снять его, как правило, не составляет труда. Достаточно ознакомиться с инструкцией по эксплуатации автомобиля, открутить несколько болтов, снять хомуты и извлечь устройство из системы. Делать это необходимо на полностью остывшем автомобиле с выключенной системой зажигания.

Что касается жидкостных радиаторов охлаждения, то снятие в данном случае представляет собой более трудоемкий процесс, который на некоторых моделях авто потребует наличия специальных инструментов. В любом случае каждая модель автомобиля имеет свои особенности, но чистка интеркулера – это обязательная процедура не только, если в нем обнаружено масло, так как он в процессе эксплуатации собирает и другую грязь, пыль, отложения и т.д. Поэтому чистка – это эффективный способ профилактики сбоев в работе турбины и других составляющих системы.

Жидкостный радиатор охлаждения

Чистить автомобильный интеркулер рекомендуется именно автомобильной химией, не стоит применять бензин, уайт-спирит и другие растворители, так как большинство современных деталей охлаждения содержат материалы, способные повредиться под действием этих веществ. Мыть деталь лучше всего под давлением в несколько заходов, при этом финальным штрихом является промывка простой водой с помощью Керхера или другой ручной мойки с возможностью регулировки давления.

Самое главное, помните, что причин, почему масло попадает в систему интеркулера, может быть огромное количество, визуально определить можно только малую часть, в остальных случаях необходимо специальное оборудование и хороший специалист.

Добавить комментарий

Закрыть меню