Температура замерзания бензина

При какой температуре замерзает бензин

Полезные советы Татьяна Федорчук 04 Мар 2018, 15:10 11960 3 Шейры: Mail Как известно, бензин – это жидкость, а значит, у него есть и температура замерзания. И дабы избежать технических проблем с автомобилем на бензиновом двигателе в морозную пору года, давайте попытаемся разобраться, при какой температуре замерзает бензин?

Чтобы понять, при какой температуре замерзает бензин, нужно в первую очередь понимать химический состав этого топлива.

Химический состав бензина

Бензин является не простым веществом (то есть не состоит из молекул одного вещества), а представляет собой смесь различных углеводородов и множества добавок. Нефть, путем перегонки которой и получают бензин, замерзает (становится густой) уже при температурах -25 – 30оС. Но бензин имеет гораздо более низкий уровень замерзания.

Обычными ингредиентами бензина являются этанол, толуол, октан, гексан и гептан. Иногда в нем присутствуют бутан, пентан и различные присадки. Большинство упомянутых химических веществ являются структурными изомерами.

Структурные изомеры – это химические соединения, имеющие одинаковую молекулярную формулу, но разные свойства из-за отличающейся структуры молекул. А потому, каждый из ингредиентов бензина имеет, как свою точку плавления, так и точку замерзания.

При какой температуре замерзает бензин

Ответ на этот вопрос напрашивается из вышеизложенного – нельзя назвать одну единую точку замерзания для бензина, ибо в зависимости от его состава у него значительно могут меняться химические и физические характеристики. Кстати, данное утверждение также применимо и к дизельному топливу.

Таким образом, ответом на вопрос «при какой температуре замерзает бензин?», является – диапазон температурных показателей.

Также стоит отметить, что при снижении температуры окружающей среды, бензин замерзает не резко общим объемом, а постепенно.

Первыми в бензине замерзают вода и смолы. Затем наступает очередь различных примесей и добавок, и самыми последними замерзают тяжелые молекулы углеводородов, которые превращаются в некое подобие хлопьев затвердевшего воска. Из-за этого бензин становится мутным и приобретает вид вязкого желе. Такое серьезное загустение бензина начинается примерно после – 60 оС -70 оС. В Украине таких температур не бывает.

Признаки замерзания топливной системы

Итак, мы уже поняли, что в украинских реалиях говорить о замерзшем бензине не приходится. Но, тогда почему иногда в морозы топливо начинает плохо подаваться к инжектору или карбюратору? Дело, скорее всего, в качестве бензина.

Не станем говорить, что это происходит повсеместно (часть заправок в Украине работает добросовестно), однако, местами бензин оказывается не качественным, или как его называют в народе – «бадяжным». В него доливают воду, масло, мазут, дизель, и еще много всего лишнего. В теплую погоду все это плещется где-то на дне бака и отсеивается фильтром.

А вот в холода добавленный не зимний дизель, масло и уж тем более вода начинают замерзать и густеть, покрывая фильтр кристаллами наледи. Именно из-за этого бензин и не поступает.

Что делать, если замерзла подача топлива

Придется снять и почистить фильтр, а также избавиться от нежелательных отложений и льда в топливном баке.

В крайнем случае используйте антифриз – автомобильную охлаждающую жидкость с температурой замерзания ниже температуры замерзания воды. Добавьте его в топливный бак и подождите около часа пока он смешается с бензином.

Профилактика замерзания топливной системы

  • Совет оставлять автомобиль в отапливаемом гараже, конечно, хорош, но далеко не для всех выполним.
  • В морозную пору года старайтесь заливать в автомобиль «зимний» бензин, у которого ниже точка замерзания.
  • Заправляйтесь на проверенных АЗС, в которых риск попасть на «бадяжное» топливо минимален.
  • Не оставляйте автомобиль на морозе с полупустым баком – в конце концов, именно водяной пар на холоде кристаллизуется и является основным виновником замерзания путей подачи топлива.

Вывод

  • Еще раз: точного ответа на вопрос, при какой температуре замерзает бензин, нет. Бензин состоит из смеси различных веществ, у которых разные точки замерзания.
  • Большинство обычных автомобильных бензинов начинает густеть при температурах – 60 оС -70 оС. Бензин уже считается замерзшим, если он превращается в густую желеобразную субстанцию.
  • Чтобы избежать проблем с автомобилем в морозную пору года, сосредоточьтесь на профилактике замерзания топливной системы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Автор Татьяна Федорчук Колумнист на тему расследований нераскрытых преступлений и единственная представительница прекрасной половины в редакции «Автоцентр» Другие материалы автора:

  • Представлен автомобиль с самым большим дисплеем в салоне
  • В сгоревшем дотла автомобиле чудесным образом уцелела Библия
  • Назван главный фактор при выборе нового авто

Теги: автомобиль зимой топливо Шейры: Mail 27 27

Вход или Регистрация

Испаряемость автомобильных бензинов и их фракционный состав.

Испаряемостью жидкостей называется способность их переходить из жидкого состояния в парообразное. Автомобильные бензины должны обладать определенной испаряемостью, обеспечивающей: легкий пуск двигателя, быстрый его прогрев, полное сгорание бензина после прогрева двигателя, невозможность образования паровых пробок в топливной системе. Испаряемость характеризуется в основном фракционным составом топлива (температурными пределами выкипания отдельных фракций топлива) и давлением насыщенных паров (давление пара , находящегося в равновесии с жидкостью при определенной температуре). Фракционный состав является показателем испаряемости бензина и устанавливает зависимость между объемом бензина и температурой, при которой он перегоняется.

При определении фракционного состава любого топлива отмечаются температуры начала (НР) и конца (КР) разгонки. По температуре перегонки заданный объем бензина подразделяется на фракции: начальные, составляющие по объему до 10 % и выкипающие при достижении температуры 50-70º С; средние, составляющие по объему до 50 % и выкипающие при температуре до 100-115º С; конечные, составляющие по объему до 90 % и выкипающие при температуре 185-195º С.

Температуры выкипания названных фракций бензина оказывают непосредственное влияние на его эксплуатационные показатели и на работу двигателя. Температуры выкипания начальных (t10%) фракций определяют легкость пуска холодного двигателя и скорость его прогрева на холостом ходу. Чем ниже эта температура, тем легче и быстрее можно пустить холодный двигатель, так как большее количество бензина будет попадать в цилиндры в паровой фазе. Однако, если бензин имеет слишком низкие температуры начала перегонки и перегонки 10 %, то при горячем двигателе и особенно в жаркое время в системе питания могут испаряться наиболее низкокипящие углеводороды, образуя пары, объем которых в 150-200 раз больше объема бензина. При этом горючая смесь обедняется, что вызывает перебои в работе двигателя или его остановку. Это явление получило название «паровой пробки».

Температура выкипания средних (t50%) фракций влияет на приемистость двигателя (интенсивность разгона) и устойчивость работы на малой частоте вращения коленчатого вала. Чем ниже эта температура, тем легче испаряются средние фракции бензина, обеспечивая поступление в непрогретый еще двигатель горючей смеси необходимого состава. Если t50% оказывается чрезмерно высокой, то испарение бензина происходит медленно, топливовоздушная смесь образуется обедненной, а поэтому прогрев двигателя получается длительным и приемистость его заметно ухудшается.

По температуре перегонки 90 % и температуре конца перегонки судят о наличии в бензине тяжелых трудноиспаряемых фракций, об интенсивности и полноте сгорания рабочей смеси, о мощности, развиваемой двигателем, и количестве расходуемого топлива, об износах двигателя. Чем выше t90%, КР, тем вероятнее неполное испарение и сгорание бензина попадающего в цилиндр. Неполное сгорание топлива ведет к увеличению его расхода и снижению мощности двигателя. Еще большая опасность возникает оттого, что несгоревшие фракции бензина, оседая на стенках цилиндра, смывают с них масло и, стекая в картер, разжижают масло.

Бензин считается удовлетворяющим требованиям нормальной работы двигателя, если составляющие его фракции находятся в пределах температур перегонки. при отклонении фракционного состава от заданных температур ухудшаются пусковые свойства, возрастает расход топлива и уменьшается развиваемая двигателем мощность.

Еще одним параметром характеризующим фракционный состав является величина потерь бензина при перегонке. По данному показателю судят о склонности бензина к испарению при транспортировке и хранении.

Давление насыщенных паров характеризует испаряемость начальных (головных) фракций бензинов и прежде всего их пусковые качества. Чем больше в бензине легких фракций, тем выше давление его насыщенных паров и тем лучше его пусковые свойства. Однако с повышением давления насыщенных паров бензина возрастает склонность к образованию им паровых пробок, и увеличиваются потери от испарения его на складах и топливных баках. Для бензинов летнего вида давление насыщенных паров не должно превышать 500 мм рт. ст., а для зимнего вида оно должно быть в пределах 500-700 мм рт. ст. Летний бензин предназначен для использования с 1 апреля по 1 октября и имеет испаряемость фракций ниже, чем зимний (с 1 октября по 1 апреля).

Механические примесив бензине не допускаются. Они приводят к засорению топливных фильтров, топливопроводов, жиклеров, что нарушает нормальную работу двигателя. Пир попадание механических примесей в двигатель увеличивается износ цилиндров и поршневых колец.

Вода в бензине не допускается так как при температурах ниже 0º С замерзает, образуя кристаллы льда, которые могут предотвратить доступ бензина в цилиндры двигателя. Кроме того, вода способствует осмолению бензина, так как в ней растворяется ингибитор, а так же является основным источником коррозии стальных деталей системы питания.

Растворимость воды в бензинах и других нефтепродуктах невелика и составляет при обычных условиях сотые доли процента. Такая концентрация воды в бензине не вносит осложнений в практику эксплуатации автомобилей.

Виды сгорания рабочей смеси в двигателе с воспламенением от искры.

Развиваемая двигателем мощность в большой степени зависит от характера сгорания бензино-воздушной смеси: скорости сгорания, полноты сгорания, моментов начала и конца сгорания.

Сгорание рабочей смеси может быть нормальное, в результате самовоспламенения (калильное зажигание) и детонационное.

Нормальное сгорание. Сгорание смеси называется нормальным, если она полностью сгорает в цилиндрах двигателя при средних скоростях распространения фронта пламени, укладывающихся в пределы от 15 до 30 м/с. При нормальном сгорании смесь сжатая до 10-16 кгс/см2 и нагретая теплом сжатия до 350-380º С, воспламеняется от искры свечи зажигания. Длительность основной фазы сгорания составляет 25-30º угла поворота коленчатого вала или примерно 0,0025 с при 2000 об/мин.

В случае возникновения калильного зажигания (самовоспламенения) часть смеси воспламеняется не от искры свечи зажигания, а самопроизвольно от перегретых деталей или раскаленных частиц нагара на стенках камеры сгорания.

Характерный внешний признак самовоспламенения в карбюраторном двигателе — это продолжение работы двигателя с очень низкой частотой вращения коленчатого вала (200-300 об/мин) после выключения зажигания.

Самовоспламенение может являться причиной возникновения детонации.

Детонационное сгорание.

Детонациейназывается ненормальная работа двигателя с воспламенением от искры, вызванная взрывным сгоранием части горючей смеси и сопровождающаяся металлическими стуками, появлением в отработавших газах черного дыма, падением мощности, перегревом двигателя и другими вредными последствиями вплоть до механического повреждения отдельных деталей двигателя.

Детонационное сгорание рабочей смеси происходит в результате цепных реакций образования и самопроизвольного распада углеводородных перекисей под воздействием высоких температур и давлений, которым подвергается рабочая смесь, сгорающая в последнюю очередь.

Первоначально воспламенение рабочей смеси происходит от искры свечи зажигания и фронт пламени распространяется по камере сгорания с нормальными скоростями. При этом температура пламени достигает 2000-2500º С. Условия для детонации наиболее благоприятны в той части камеры сгорания, где выше температура и больше время пребывания смеси. При нормальном протекании процесса сгорания для самовоспламенения (и последующей детонации) рабочей смеси не хватает времени. Если же очаги воспламенения возникают в рабочей смеси до подхода фронта пламени вызванного искрой свечи зажигания, то такое сгорание, как и давление в цилиндре, распространяется со скоростью звука и приобретает взрывной характер. В цилиндре возникают и распространяются ударные волны, которые при столкновении со стенками вызывают сильные динамические нагрузки и сопровождаются звонким «металлическим» стуком. При детонации скорость распространения пламени в камере сгорания достигает 2000-2500 м/с, а температура сгоревшей смеси повышается до 2500-3000º С.

На появление детонации влияют детонационная стойкость бензина, состав рабочей смеси, режим работы двигателя. Для подавления детонации при эксплуатации карбюраторных двигателей автомобилей можно использовать уменьшение опережения зажигания, прикрытие дросселя и увеличение скорости вращения коленчатого вала.

Методы оценки детонационной стойкости бензинов.

Детонационная стойкость бензинов оценивается октановыми числами, определяемыми по моторному и исследовательскому методам. Показатель октанового числа входит в маркировку бензина.

Октановое число определяется на одноцилиндровой установке определенной конструкции (установка ИТ9-2м – моторный метод – ГОСТ 511-82, установка ИТ9-6 – исследовательский метод – ГОСТ 8226-82) с переменной степенью сжатия в эталонных условиях на обедненной смеси. Величину октанового числа находят сравнением исследуемого топлива с эталонным топливом. В качестве эталонного топлива применяют смеси с различным содержанием по объему двух углеводородов – изооктана (С8Н18),чья детонационная стойкость принята за 100, и нормального гептана (С7Н16), детонационная стойкость которого принята за нуль.

Октановое число жидкого топлива (бензина) численно равно процентному содержанию изооктана в такой смеси с нормальным гептаном эталонных топлив, которая по детонационной стойкости равноценна испытуемому бензину.

Испытания по исследовательскому методу проводят при менее напряженном режиме, чем по моторному: смесь за карбюратором не подогревают, тогда, как во втором случае температуру подогрева смеси поддерживают на уровне 150º С. Поэтому моторный метод точнее оценивает детонационные свойства автомобильного бензина на форсированных режимах езды, а исследовательский — на ограниченной мощности с частыми остановками и при меньшей тепловой напряженности.

Октановые числа определенные по моторному методу, обычно на 4-10 меньше октанового числа, определенного исследовательским методом. Чем выше степень сжатия карбюраторного двигателя (двигателя с внешним смесеобразованием), тем с большим октановым числом должно применяться топливо.

Методы повышения октанового числа бензинов.

Повышение октанового числа бензинов в основном достигается двумя способами, а именно воздействием на их химический состав и введением в них специальных присадок – антидетонаторов. Углеводороды, входящие в состав бензинов, различаются по детонационной стойкости. Наименьшей детонационной стойкостью обладают нормальные парафиновые углеводороды, наибольшей -ароматические.

Варьируя углеводородным составом, получают бензины с различной детонационной стойкостью. Практически это осуществляется при каталитическом крекинге и риформинге, а также путем добавки к бензинам высокооктановых компонентов, синтезированных из газообразных углеводородов.

Наибольшее распространение получил второй метод повышения детонационной стойкости — с помощью антидетонаторов.

Антидетонаторами называют такие вещества, которые при добавлении к бензину в относительно небольших количествах резко повышают его детонационную стойкость. К их числу относятся металлоорганические соединения. Наиболее эффективным антидетонатором, является тетраэтилсвинец (ТЭС). ТЭС (Pb(C2H5)4) – бесцветная прозрачная жидкость плотностью 1,65. В воде ТЭС не растворяется, но хорошо растворяется в бензине и других органических растворителях. Механизм действия антидетонаторов, и в частности тетраэтилсвинца, объясняется перекисной теорией детонации и цепных реакций. При высоких температурах в камере сгорания (500-600º С) ТЭС полностью разлагается c образованием металлического свинца

Pb(C2H5)4 4C2H5 + Pb

Образующийся свинец окисляется с образованием диоксида свинца,

Pb + О2 PbО2

который вступает в реакцию с пероксидами (перекисями) и разрушает их. При этом образуются малоактивные продукты окисления углеводородов и оксид свинца, способный реагировать с новой молекулой переоксида. Таким образом, один атом свинца, восстанавливаясь и окисляясь, способен разрушить большое количество пероксидных молекул. В чистом виде антидетонационные присадки к бензинам использовать не удается, так как продукты сгорания в виде нагара откладываются и накапливаются в камере сгорания. В связи с этим ТЭС добавляют в бензин в смеси с веществами – выносителями, образующими со свинцом и его оксидами при сгорании летучие вещества, которые удаляются из двигателя с отработавшими газами. В качестве выносителей применяют вещества, содержащие бром, и в меньшей степени хлор. Смесь ТЭС и выносителя, которая применяется как антидетонатор, называется этиловой жидкостью. Автомобильные бензины, содержащие этиловую жидкость, называются этилированными.

Этиловая жидкость Р-9 представляет собой смесь тетраэтилсвинца с этилбромидом и хлорнафталином. Этиловая жидкость П.-2 – смесь тетраэтилсвинца с дибромпропаном и хлорнафталином.

В связи с ужесточением норм на выбросы вредных веществ с отработавшими газами этилированные бензины заменяются неэтилированными.

В последнее время в качестве антидетонатора применяется (особенно за рубежом) марганцевый антидетонатор (ЦТМ), равноценный по эффективности ТЭС.

ЦТМ (циклопентадиенилтрикарбонил марганца) С5Н5Mn(CO)3 представляет собой кристаллическое вещество, хорошо растворяющееся в бензине. К антидетонатору ЦТМ добавляется выноситель (бисэтилксантоген) и антинагарная присадка (трикрезилфосфат). Бензин, содержащий ЦТМ, по токсичности приближается к чистому бензину. Недостатком ЦТМ является интенсивное образование окиси марганца на электродах свечей, быстро приводящее к замыканию искрового промежутка и, следовательно, к остановке двигателя.

В качестве высокооктановой добавки к бензинам используют метилтретбутиловый эфир (МТБЭ). Физико-химические свойства МТБЭ близки к свойствам бензина. Добавка 10 % МТБЭ в бензин повышает октановое число на 5-6 единиц.

Повысить октановое число бензина можно введением в его состав ароматических аминов (до 2 %). Например, высокоэффективной добавкой к бензинам является экстралин, представляющий собой смесь производных ароматических соединений.

Стабильность бензинов.

Физическая стабильность.

Наиболее глубокие изменения свойств бензина происходят в результате двух физических процессов: нарушение однородности бензина вследствие выпадения кристаллов высокоплавких углеводородов и испарения его легких фракций.

Кристаллизация углеводородов в отечественных автомобильных бензинах происходит при очень низких температурах (ниже -60º С), поэтому при эксплуатации автомобилей даже в суровых зимних условиях не нарушается работа двигателей и их систем питания. При транспортировании, и хранении бензина происходит испарение легких фракций бензина, что заметно сказывается на пусковых качествах топлива, а именно на начальных точках разгонки и особенно на давлении насыщенных паров, которое от испарения 3-4 % бензина может снизиться в 2-2,5 раза. Из выше сказанного следует, что бензины должны храниться в герметичной таре по возможности при низкой и малоизменяющейся температуре, лучше всего в подземных хранилищах.

Химическая стабильность.

Изменение свойств бензина может произойти от химических превращений его компонентов и в первую очередь от окисления непредельных углеводородов. Склонность топлив к окислению и смолообразованию при их длительном хранении характеризуют индукционным периодом.

Индукционным периодом называется выраженное в минутах время, в течении которого испытуемый бензин в среде чистого кислорода под давлением 0,7 МПа и при температуре 100ºС практически не подвергается изменению.

Чем больше индукционный период, тем стабильнее бензин и тем дольше его можно хранить.

На повышенное содержания смол и органических кислот в бензине, указывает изменение цвета бензина. При осмолении бензин приобретает желтый цвет иногда с коричневатым оттенком.

Процесс окисления является самоускоряющимся. Каталитически ускоряющее на образование смол действует ржавчина и загрязнение тары, в которой хранится топливо. Попадание воды в бензин так же нежелательно, так как она растворяет ингибиторы и снижает их эффективность. В качестве присадок к бензинам препятствующих их осмолению, используют древесно-смолистый антиокислитель в количестве 0,050-0,015 % и антиокислитель ФЧ-16 в количестве 0,03-0,10 %.

Коррозионное воздействие бензинов на металлы.

Бензины как и другие нефтепродукты, должны обладать минимальным коррозионным воздействием на металлы. Коррозия металлов, из которых изготовлены детали системы питания, может появиться только в том случае, если в бензинах будут присутствовать следующие соединения: минеральные кислоты, щелочи, органические кислоты, сера и сернистые соединения.

Водорастворимые кислоты и щелочиобладают сильным коррозионным воздействием на металлы, вызывают интенсивный износ деталей двигателя и элементов системы питания. Водорастворимые кислоты оказывают воздействие, как на черные так и на цветные металлы, щелочи активно корродируют цветные металлы. По этой причине стандартами на автомобильные бензины не допускается содержание в них хотя бы следов водорастворимых кислот и щелочей.

Отсутствие в бензинах водорастворимых кислот и щелочей определяется по величине рН водной вытяжки бензина, для этого 50 мл бензина тщательно перемешивают с таким же объемом дистиллированной воды и полученную водную вытяжку испытывают на наличие кислот водным раствором метилоранжа, а щелочей — спиртовым раствором фенолфталеина.

Нейтральность водной вытяжки свидетельствует об отсутствии в нефтепродукте минеральных кислот и щелочей.

Органические кислоты. Стандартами допускается наличие в бензинах ограниченного количества органических (нафтеновых) кислот. Это объясняется тем , что органические кислоты обладают значительно меньшим коррозионным воздействием на металлы, чем минеральные. Однако они представляют опасность для цветных металлов (свинец, цинк), особенно в присутствии воды. Количество органических кислот в бензине постоянно возрастает вследствие окисления непредельных углеводородов.

Содержание органических кислот в топливах принято характеризовать кислотностью, под которой понимают количество щелочи КОН, выраженное в миллиграммах и потребное для нейтрализации всех нафтеновых кислот в 100 мл топлива.

Кислотность – количественная характеристика содержащихся в нефтепродукте органических кислот.

Сера и сернистые соединения.

Активные сернистые соединения отличаются особой коррозионной агрессивностью по этой причине их присутствие в топливах недопустимо.

Наличие активных сернистых соединений качественно обнаруживается испытанием на медную пластинку. Медную пластинку тщательно очищают и выдерживают в бензине (дизельном топливе) 3 часа при температуре 50º С. Если по истечении трех часов на поверхности медной пластины не появились черные, темно-коричневые или серо-стальные пятна, то нефтепродукт считается выдержавшим испытание. Отрицательная проба на коррозию медной пластинки указывает на то, что содержание сероводорода в бензине не более 0,0003, а элементарной серы не более 0,0015 %.

Неактивные сернистые соединения практически не корродируют металлы, однако, вызывают коррозию при сгорании топлива в цилиндрах двигателя. Стандартом на бензины допускается содержание в топливах ограниченного количества неактивных сернистых соединений.

Марки бензинов.

Каждая марка бензина имеет условное обозначение, в которое входят буквы и цифры. Буква А означает, что бензин является автомобильным, буква И показывает, что определение детонационной стойкости произведено по исследовательскому методу, а цифры, следующие после дефиса, — минимальное октановое число, например АИ-93. Если октановое число определено по моторному методу, маркировка бензина содержит только букву А, и цифра — обозначает октановое число, например А-76.

Сейчас в Российской Федерации действует стандарт «Бензины для автомобильного транспорта», который включает в себя следующие марки бензинов: А-72(нэ), А-76(э), А-76(нэ), АИ-80(нэ), АИ-91(нэ), АИ-92(нэ), АИ-95(нэ), АИ-96(нэ), АИ-98(нэ).

ГОСТом не предусмотрен бензин АИ-93, вместо него предлагается АИ-91.

Бензины А-72, А-76, АИ-91, АИ-93 и АИ-95 изготавливаются зимнего и летнего видов.

С января 1999 г. в России введен новый государственный стандарт на бензины. Но не на все, а только на неэтилированные. Новый стандарт регламентирует четыре марки бензина: Normal – 80, Regular – 91, Premium – 95, Super – 98. Первый из них заменяет бензины А-76 и АИ-80. Экологические требования к ним (по ГОСТ Р 51105-95) жестче: содержание ТЭС не более 0,010 г/л, полностью запрещено использование железосодержащих антидетонаторов, содержание марганца ограничено на уровне 0,5 г/л для бензина Normal-80 и 0,18 г/л для Regular-91. Выпуск этилированных бензинов в России после 2003 г. резко сокращен.

Температура замерзания бензина и дизтоплива.

Может ли замерзнуть бензин или дизельное топливо? — этот вопрос актуальный, особенно зимой и особенно в нашей стране. Не противоречит ли такое явление законам физики, и какой же должна быть температура, чтобы это все-таки произошло.

Химический состав нефти говорит сам за себя, если знать второе название этого «ископаемого» – углеводород. Соответственно, эта жидкость состоит из углерода на 85% и водорода на 15%! Однако точной формулы нефти не существует! Вернее она разная и зависит от состава и количества соединений. Из нефти получают разные виды топлива — это бензин, дизтопливо и керосин.

В отличие от дизельного топлива бензин более летучий, быстрее подвергается испарению и токсичнее. Изготавливают его из нефти методом прямой перегонки либо путем крекинга, который бывает каталитическим и термическим. Последний вариант более прогрессивный, так как топлива получается больше в 4–5 раз, нежели способом перегонки, да и качество его намного выше на выходе.

Температура замерзания бензина.

Нефть загустевает при минус 25-30 °C. Что касается бензина, то без изменения состояния выдерживает и более низкие температуры.

Жителям средней полосы, где не бывает больших морозов, а самые низкие значения температуры воздуха колеблются в пределах — 20–35 °C, не стоит волноваться, так как на таком морозе бензин в баке замерзнуть не может просто физически.

Но мы говорим о качественном бензине, который соответствует всем действующим стандартам. В свою очередь качество топлива зависит от содержащихся в нем так называемых присадок, способе производства и фильтрации. Если верить общепринятой информации, у таких востребованных марок бензина как АИ–92, АИ–95 и АИ–98 отмечается заниженный порог замерзания, который стартует с 72 °C! Поэтому теоретически замерзнуть они в состоянии разве что на полюсах Земли. Имеется так же информация о том, что такое топливо премиум класса, как например, ЕВРО-6 и ему подобные, замерзают только при очень низком температурном режиме – ниже минус 118 °C. Экспериментально доказано, что такая температура бензина превращает его в густое желе.

Именно поэтому в Арктике пользуются особым бензином, который называется «Арктическим». Специальные формулы помогают ему оставаться в жидком состоянии до минус 150 градусов Цельсия!

Такое свойство топлива как не замерзание важно, но куда важнее его способность к воспламенению. Такой показатель как вязкость бензина регулируется ГОСТом и указывает на наличие серы и стартовую температуру воспламенения или так называемой вспышки в двигателе. ГОСТ допускает вязкость, при которой, бензины загораются, отсутствует загустение и порог температуры составляет – минус 62 °C.

Не подается топливо. Что предпринять?

Если подачи бензина от бака к инжектору и карбюратору нет, то замерзание топлива тут ни при чем, а все происходит так потому, что оно низкого качества или дело в вине самого автовладельца.

Из этого следует, что нам на пути могут встретиться недобросовестные заправки. На них бензин могут бадяжить дизелем или водой, даже маслом или мазутом, и даже непонятно чем. Но бывают более-менее добросовестные заправочные станции, на которые нам всем надо стремиться попасть…

Стоит отметить, что особенно опасно заправляться бадяжным бензином в минусовые температуры. Дело в том, что когда тепло, то вода и прочие вредоносные примеси оседают на дно бака и задерживаются сеткой фильтра. Таким образом, они фильтруются, и двигатель не страдает.

Но в морозную погоду все происходит куда плачевнее. Вода замерзает, летнее дизельное топливо, и прочие нефтехимические продукты также густеют. В результате этого на фильтре образовывается густая пленка, которая и задерживает поступление топлива! Такое может случиться с любым автомобилем.

Проблема с топливным насосом.

Если топливный насос не качает топливо, то снимите и почистите фильтр. Не лишним будет прочистить и бак. После этих мероприятий по очистке почти во всех случаях работа топливного насоса будет восстановлена. Замерзание возможно только при сильных морозах!

Но иногда сами водители могут своими действиями допустить попадание воды и других нежелательных примесей в топливо. Например, если они заправляют свою машину в дождь или снег и пользуются при этом канистрой с обычной воронкой. А если еще на дне канистры что-то скопилось, например, ржавчина, и сетки на воронке нет, то все прямиком попадет в топливный бак. Вывод: бензин нужно наливать в бак только с использованием специальной воронки, на которой имеется сетка.

Температура замерзания дизельного топлива

Владельцы автомобиля, работающего на дизеле, знают, что оно бывает летнее и соответственно зимнее. Само их название говорит о себе.

Дизтопливо замерзло. Что предпринять?

Зимнее дизтопливо отличается от летнего меньшим содержанием парафиновых добавок. В мороз парафиновые добавки охлаждаются и превращаются в твердое состояние, образовывая осадок. На первой стадии этого процесса дизельное топливо мутнеет, что само по себе не вредно, но по мере охлаждения молекулярный состав парафинов кристаллизируются. По мере разрастания кристаллов, они начинают застревать в топливном фильтре в гелеобразном состоянии и блокируют продвижение топлива. В итоге в мотор оно не поступает.

Качество зимней солярки на морозе зависит от поведения при разных температурах. Максимальная фильтруемость наступает после стадии помутнения и именно наступление этой стадии на определенном температурном режиме характеризует качественные показатели.

Летняя солярка достигает температуру застывания уже в минус 5 °C, тогда как зимняя только при минус 35°C. Из нефти летнего дизтоплива получается свыше 40 %, тогда как зимнего намного меньше – всего 25%. Разумеется, денег за зимнее дизтопливо придется заплатить больше. Поэтому с целью наживы на недобросовестных АЗС разбавляют дорогую солярку более дешевым ее вариантом.

Чтобы дизтопливо не достигло температуры застывания даже в небольшую минусовую температуру используют спецдобавку — антигель, при добавлении которой невозможным становится кристаллизация парафиновой взвеси. Кроме того, эта добавка дополнительно уменьшает количество дыма в выхлопах.

Отметим, что антигель работает только до момента замерзания солярки. Но если такой добавки у вас нет под рукой, в крайнем случае, допустимо использовать керосин. При самой критической ситуации, добавляется тормозная жидкость (в пропорции 100 мл на 100 литров).

Если дизтопливо уже успело замерзнуть, то имеется спецсредство, которое разморозит его. Но если спецсредства тоже нет, то вам поможет источник тепла, за исключением прямого попадания пламени. К примеру, выхлопные газы, исходящие от другого авто или горячая вода поливается на топливный бак.

Отзывы и рекомендации автовладельцев.

Иван:

Из личного наблюдения скажу, что критичные температуры для летнего дизтоплива – это минус 10 °C, а при минус 10-15 °C начинаются неполадки с топливным фильтром – его забивают густые хлопья парафина. В 90-тых иномарки на дизельном топливе уже были оснащены подогревом топливного фильтра. Сейчас и солярка часто попадается плохая и антигеля на нее не напасешься. Поэтому выбрал одну заправку, где более менее не бадяжат и только там и заправляюсь.

Владимир Евгеньевич:

У меня была один раз такая беда и было тогда всего минус два. Топливо не подавалось. Пришлось выкрутить из бака трубки с сеточкой. Увидел сразу на сетке какой то комок материи с ледяными кусками. Может еще раньше в бак попала жидкость вместе с этой тряпкой. Теперь бдительности не теряю, заглядываю часто в фильтр.

Егор:

Я считаю солярку отходами нефтепереработки. Если она чистая, без всяких примесей, то при обычных наших зимних температурах она замерзнуть не может. Бензин и при минус 40 никак не замерзнет.

Но а если в дизель добавляют всякий непотребную дрянь, например парафин или воду (у нас этим часто грешат на заправках), то и минус 20 будет достаточным, чтобы замерзло. Тогда проблем достанется и двигателю и владельцу авто.

Сергей:

Разные виды топлива имеют свои температурные режимы. Так летняя солярка рассчитана на эксплуатацию в пределах — 5 до — 7 градусов.

Зимняя – заледенеет уже при — 30 – -35 градусов.

Специальное, арктическое — только при — 50 градусов.

Это должны знать все автовладельцы, чтобы у них в морозы не возникало сложностей и неприятностей.

Видео.

Рекомендую прочитать:

Кипение — бензин

Cтраница 1

Кипение бензина начинается РїСЂРё сравнительно РЅРёР·РєРѕР№ температуре Рё протекает очень интенсивно.  

Конец кипения бензина РЅРµ указан.  

Начало кипения бензина — ниже 40 РЎ, конец — 180 РЎ, температура начала кристаллизации РЅРµ выше — 60 РЎ. Кислотность бензина РЅРµ превышает 1 РјРі / 100 РјР».  

Температура конца кипения бензина РїРѕ ГОСТ составляет 185 РЎ, Р° фактическая — 180 РЎ.  

Температура конца кипения бензина — это температура, РїСЂРё которой стандартная ( 100 РјР») порция испытуемого бензина полностью перегоняется ( выкипает) РёР· стеклянной колбы, РІ которой РѕРЅР° находилась, РІ приемник-холодильник.  

Схема стабилизационной установки.  

Конечная точка кипения бензина РЅРµ должна превышать 200 — 225 РЎ. Для авиационных бензинов конечная температура кипения лежит значительно ниже, РґРѕС…РѕРґСЏ РІ некоторых случаях РґРѕ 120 РЎ.  

РњРџР° температура кипения бензина равна 338 Рљ, его средняя молярная масса 120 РєРі / кмоль, Р° теплота парообразования Рі СЊ 252 кДж / РєРі.  

Температура начала кипения бензина, например 40 для авиабензинов РіРѕРІРѕСЂРёС‚ Рѕ наличии легких, низкокипящих фракций, РЅРѕ РЅРµ указывает РёС… содержания. Температура выкипания первой 10 % — РЅРѕР№ фракции, или РїСѓСЃРєРѕРІРѕР№, характеризует пусковые свойства бензина, его испаряемость, Р° также склонность Рє образованию газовых РїСЂРѕР±РѕРє РІ системе подачи бензина. Чем ниже температура выкипания 10 % — РЅРѕР№ фракции, тем легче запустить двигатель, РЅРѕ Рё тем больше возможность образования газовых РїСЂРѕР±РѕРє, которые РјРѕРіСѓС‚ вызвать перебои РІ подаче топлива Рё даже остановку двигателя. Слишком высокая температура выкипания РїСѓСЃРєРѕРІРѕР№ фракции затрудняет запуск двигателя РїСЂРё РЅРёР·РєРёС… температурах окружающей среды, что РїСЂРёРІРѕРґРёС‚ Рє потерям бензина.  

Влияние температуры конца кипения бензина РЅР° его расход РїСЂРё эксплуатации автомобиля.| Влияние температуры перегонки 90 % бензина РЅР° октановое число-бензинов различного происхождения.  

Снижение конца кипения бензинов риформинга ведет Рє ухудшению РёС… детонационной стойкости. Для решения этого РІРѕРїСЂРѕСЃР° необходимы исследовательские работы Рё экономические расчеты. Следует отметить, что РІ зарубежной практике целого СЂСЏРґР° стран РІ настоящее время вырабатываются Рё применяются автомобильные бензины СЃ температурой конца кипения 215 — 220 РЎ.  

Влияние температуры конца кипения бензина РЅР° его расход РїСЂРё эксплуатации автомобиля.| Влияние температуры перегонки 90 % бензина РЅР° октановое число бензинов различного происхождения.  

Снижение конца кипения бензинов риформинга ведет Рє ухудшению РёС… детонационной стойкости. Для решения этого РІРѕРїСЂРѕСЃР° необходимы исследовательские работы Рё экономические расчеты. Следует отметить, что РІ зарубежной практике целого СЂСЏРґР° стран РІ настоящее время вырабатываются Рё применяются автомобильные бензины СЃ температурой конца кипения 215 — 220 РЎ.  

Если температура конца кипения бензина высока, то содержащиеся РІ нем тяжелые фракции РјРѕРіСѓС‚ РЅРµ испариться, Р°, следовательно, Рё РЅРµ сгореть РІ двигателе, что приведет Рє повышенному расходу топлива.  

Понижение температуры конца кипения бензинов РїСЂСЏРјРѕР№ перегонки ведет Рє повышению РёС… детонационной стойкости. РЎ низкооктановых бензинов РїСЂСЏРјРѕР№ перегонки имеют октановые числа соответственно 75 Рё 68 Рё применяются РІ качестве компонентов автомобильных бензинов.  

Добавить комментарий

Закрыть меню